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Abstract— This paper presents Artificial Neural Network (ANN) implementation for Mechanical modeling of Radio Frequency Micro Electro 
Mechanical System (RF MEMS) lateral double beam switch. We propose an efficient approach based on ANN for analyzing the static and 
dynamic characteristics of RF MEMS lateral switch by calculating its characteristics parameters.  ANN model were trained with five learning 
algorithms and the results from the neural model trained by Levenberg-Marquardt back propagation algorithm are highly agreed with theo-
retical results. The neural network shows better results with highest correlation coefficient (0.5844) along with lowest root mean square er-
ror (0.0539). 

Index Terms— Artificial neural networks, Micro electro mechanical systems, threshold voltage, frequency response and effective mass.   

——————————      —————————— 

1  INTRODUCTION                                                                     
Micro Electro Mechanical System (MEMS) is the integration 

of mechanical elements, sensors, actuators and electronics on 
common silicon substrate by micromachining process [1]. The 
advancements  in  the  field  of  designing  sensors,  micro  ma-
chines and control elements have facilitated much attention in 
the  rapid  developments  of  radio  frequency  (RF)  MEMS.  The  
first MEMS switch was demonstrated in 1971 using electrostat-
ic actuation used to switch low frequency electrical signals [2]. 
When compared to the performance of MEMS switches, tradi-
tional  integration  of  PIN  diode  and  GaAs  FET  in  switching  
circuits  is  degraded  because  of  high  insertion  and  low  isola-
tion  losses  in  high  frequency  (GHz)  [3].  They  are  suffering  
from high power consumption and significant inter modula-
tion product due to nonlinear characteristics [4].  

On  the  other  hand,  the  recently  developed  RF  MEMS  
switches exhibit excellent switching characteristics over wide-
band from RF to mm–wave frequencies (0.1 to 100GHz) with 
the following remarkable advantages such as extremely low 
insertion loss (0.1dB) and very high isolation upto 100GHz, 
near zero power consumption (10-200nJ/switching cycles), 
simple biasing circuit, potential for low cost and no inter 
modulation product (30-50dB better than PIN or FET switches) 
[4, 5].  

Based on direction of motion, MEMS switches can be classi-
fied as vertical and lateral switches. Most of the reported 
works  are  based  on  vertical  switch  which  performs  in  wafer  
plane displacement and surface contact [6]. But the lateral 
switch performs in wafer plane displacement and side wall 
contact. The vertical switches have the drawbacks of stiction 
problem during the moveable structure release. But in the case  

 
 

 
of lateral switches, the actuators, contacts, support structures 
and conducting paths can be fabricated in a single step and 
hence have the benefit of co-fabrication. Besides, it is easy to 
get mechanical force in opposing direction even when elec-
trostatic designs are used [6, 7].  

The superior qualities  of  RF MEMS switches make them as 
viable structure for various applications such as signal routing 
in transceivers applications [8], phase shifters in phase array 
antenna [3], impedance matching networks [6], wide band 
tuning networks, reconfigurable antennas, filters and related 
circuits [9]. MEMS concepts have been successfully applied in 
the development of  RF switches to be used in the phase shif-
ters which are having the benefits of low loss, low parasitic 
capacitance and high linearity [10]. In order to analyze and 
optimize the design of these complex structures, several tech-
niques have been proposed in the past decade. Softwares 
based on Electromagnetic and Electromechanical [11] prin-
ciples are also developed for commercial use. But these tech-
niques are not much suitable for modeling of RF MEMS devic-
es due to much computational time and efforts involved.  

An accurate device characterization and efficient prediction 
of general input-output relationship can be achieved based on 
nonlinear mapping capabilities of Artificial Neural Network 
(ANN)  [12].  ANNs  have  been  utilized  for  modeling  of  inte-
grated circuits in RF and millimeter wave frequency range 
[13]. In this work, threshold voltage and frequency response of 
a cantilever bean used in the double beam lateral switch which 
find application in high frequency transmitting and receiving 
signal routing has been analyzed using neural networks. Gen-
eration of training and testing datasets are realized from 
MATLAB simulation.  The cantilever beam used in the switch 
has been analyzed in terms of it static threshold voltage and 
dynamic  frequency  response  and  effective  mass.  Due  to  the  
optimization of generalized dimension of actuation part, the 
datasets for the mechanical design of the switch are obtained. 
The resultant input and output relationship are mapped using 
the neural model. Based on valid range of input parameters, 
neural networks are trained and tested. The neural models are 
trained with Levenberg-Marquart (LM), Bayesian Regulariza-
tion (BR), Quasi – Newton (QN), Scaled Conjugate Gradient 
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(SCG) and Conjugate Gradient of Fletcher – Powell (CGF) 
training algorithms. Although extensive time and effort are 
required for preparing the dataset, once the network is 
trained, the proposed model accurately predicts the device 
responses for arbitrary inputs within the desired range. 

 
 

2 THEORY OF DOUBLE BEAM LATERAL RF MEMS 
SWITCH 
 

The detailed loss analysis of single beam lateral switch was 
discussed with ON and OFF states in our previous work [13]. 
In this paper, double beam RF lateral switch consisting of a Si-
core finite ground coplanar waveguide (FGCPW) and an elec-
trostatic actuator is designed  as  shown  in  fig.1  for  ANN  im-
plementation since it provides low insertion loss and high 
power handling. FGCPW  is  formed  by  thick  single-crystal-
silicon plate that has been coated with thin layer of aluminum 
to make the RF signal propagation not only along the metal on 
the top surface, but also on the sidewalls of the transmission 
line. In this switch, two cantilever beams are employed and 
can be used as signal lines together to propagate RF signal 
[14].  Both  the  fixed  connections  of  the  two  cantilever  beams  
are from the same port and the two contact tips are on the oth-
er port. At the free-end of the two cantilever beams, both 
ground  lines  extend  towards  the  nearby  cantilever  beams  to  
serve as their fixed electrodes respectively.  

When sufficient DC bias voltage is applied between the can-
tilever beam and the ground line, the cantilever beam is pulled 
toward the fixed electrode by electrostatic force until its free 
end hits the contact tip, resulting in the on-state of the switch. 
When DC bias voltage is removed, the mechanical stress of the 
beam overcomes the stiction forces and pulls the cantilever 
beam away, resulting in the off-state of the switch. Due to the 
asymmetrical layout of the two ports, the S-parameters ob-
tained from the two ports are not reciprocal [3]. 

 
Fig.  1. Schematics top view of Double beam RF lateral switch. 

2.1 Mechanical modeling of lateral switch 
When a micro machined circuit is designed, it is important 

to consider the switching voltage required for its operation. 

The low actuation voltage can be achieved through the opti-
mization of the geometrical dimensions of the actuation part. 
The top view of the electrostatic actuator used in the modeling 
is shown in fig.2. 

The actuator consists of four components: a suspended can-
tilever beam serving as a movable electrode, an anchor on the 
substrate to support the cantilever beam, a fixed electrode op-
posite to the cantilever beam and a contact tip. The cantilever 
beam OC is a beam-mass structure. For the beam part OA, the 
width is 1w  and the length is 1l . For the mass part AC, the 
width is 2w and the length is 32 ll in which 2l is the length 
of the electrode section AB and 3l  is  the  length  of  BC.  The 
mass width 2w  is designed to be relatively wider than the 
beam width 1w  so that low threshold voltage can be main-
tained and greater deformation of the electrode section may be 
avoided.  
 
2.2 Static Threshold Voltage 

Assuming the electrode part of the cantilever beam is sub-
jected to a uniform load, the equivalent stiffness k  of the can-
tilever beam can be derived by the expression [15] 
 

 

 Fig. 2. Top view of the electrostatic actuator 
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and 1E and 2E are the Young’s moduli of the narrow and wide 
part  of the beam respectively. 1I and 2I are the moments of 
inertia of the cross sectional area of the narrow and wide part  
of the beam respectively .We assume that    

GPaEEE si 14021 .     (2) 
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Where siE  is the Young’s modulus of the single-crystal-silicon 
(140 GPa) and t is the height of the cantilever beam. After the 
deposition  of  aluminium  on  the  top  surface  of  the  beam,  it  
becomes the beam made of single crystal silicon partially cov-
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ered with aluminium. Therefore 121 ,, IEE and 2I  can be giv-
en by   
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where AlE  is the Young’s modulus of aluminium coated por-
tion of beam (70GPa), Alw  the thickness of aluminium depo-
sited at sidewalls of the silicon beam. Distance between the 
ends of two electrodes g  and the threshold voltage V can be 
related by solving the equation gFgF re  where 

2
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ggkgFr 0    (9) 
are the electrostatic and restoring forces respectively with 0  
is the permittivity of the air mFX 1210854.8 .  
 
2.3 Dynamic frequency response 

The frequency response of the cantilever beam is useful to 
determine the switching time and the mechanical bandwidth 
of the lateral switch [14]. Using Laplace transform, the fre-
quency response of the cantilever beam with small vibration 
amplitude can be obtained as 
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where Y  is the lateral displacement of the cantilever beam 
relative to the origin of the fixed electrode, F  is  the electros-
tatic force,  is the working angular frequency, k is the effec-
tive stiffness, 0  is the natural resonant angular frequency 
and Q is the quality factor of the cantilever beam. 0 and Q  
are expressed as 

mk0                                                                                    (11) 

bkQ 0                                                                                    (12) 

where m and b  are the effective mass and damping coefficient 
of the simplified system . The quality factor Q  of the cantilev-
er beam is determined by several variables such as the pres-
sure, the temperature and the intrinsic material dissipation. 
The quality factor is also an important component for the 

switching time calculation. 
where m and b  are the effective mass and damping coefficient 
of the simplified system . The quality factor Q  of the cantilev-
er beam is determined by several variables such as the pres-
sure, the temperature and the intrinsic material dissipation. 
The quality factor is also an important component for the 
switching time calculation. 
 
2.4   Dynamic effective mass 

It  is  noted  that  the  effective  mass  of  the  cantilever  beam  is  
not equal to the actual mass of the cantilever beam since only 
the end portion of the cantilever beam is moving [14]. Assume 
the cantilever beam is subjected  to a concentrated load P  at 
the center of the electrode section of the cantilever beam. 
Based on fig.2, we can consider the displacement ky  and ki-
netic energy kE  of the cantilever beam at three portions, re-
spectively. 
The first part is the length of the beam ranging  10 lx  . Its 
kinetic energy 1kE  is given by  
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Where   tlwwm mmsi 111 2                (14) 

The second part  is  from the beginning of  the electrode to the 
center of the electrode of the cantilever beam 

2211 llxl . The kinetic energy 2kE is given by 
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Where tlwwm mmsi 222 2                                               (16) 

The third part is from the center of the electrode to the end of 
the cantilever beam 32121 2 lllxll . The kinetic 
energy 3kE  is given by 
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Therefore, the total kinetic energy kE is given by  
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where the velocity my  at the end of the cantilever beam is  
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3 ARTIFICIAL NEURAL NETWORKS 
 

ANNs are biologically inspired computer programs to si-
mulate  the  way  in  which  the  human  brain  process  informa-
tion. It is a very powerful approach for building complex and 
nonlinear relationship between a set of input and output data. 
The recent work by researchers demonstrated the ability of 
neural networks to learn and model a variety of microwave 
components, such as micro strip interconnects, spiral conduc-
tors, CPW components and packing and interconnects [16]. 
Neural models can be much faster than original detailed 
EM/physics models, more accurate than polynomial and em-
pirical models, allow more dimensions than table lookup 
models and are easier to develop when a new device 
/technology is introduced [17]. The cost for developing neural 
models is mainly depending on data collection and training. 
 The power of  computation is  determined from connections 
in a network. Each neuron has weighted inputs, simulation 
function, transfer function and output. The weighted sum of 
inputs constitutes the activation function of the neurons. The 
activation  signal  is  passed  through  a  transfer  function  which  
introduces non-linearity and produces the output. During 
training process, the inter-unit connections are optimized until 
the  error  in  prediction  is  minimized.  Once  the  network  is  
trained, new unseen input information is entered into the 
network to calculate the test output. Many types of neural 
networks developed for various applications are available in 
the literature. 
 The class of neural network and its architecture for a partic-
ular  model  implementation depend on the nature of  problem 
to be solved. The neural network architecture used in this pa-
per is the MultiLayer Perceptron Neural Network (MLPNN). 
These networks having multilayer feed forward architecture 
composed  of  layers  of  computing  nodes  called  neurons  [16].  
The MLPNN is one of the most extensively used ANN due to 
its well-known general approximation capabilities and limited 
complexity.  
 The MLPNN model used in this work consists of three lay-
ers: an input layer, an output layer and two intermediate or 
hidden layers. Each neuron in the input layer is acting only as 
a buffer for distributing the input signals ix  to neurons in the 
hidden layer. Each neuron j  in the hidden  layer sums up its 
input signals ix  after weighting them with the strengths of the 
respective connections ijw  from the input layer and compute 
its output jy  as  a function of the summation and  hence  

iijj xwfy                                             (20) 
where f can be a simple threshold function, a sigmoidal [17] 
or hyperbolic tangent function [18]. The output of neurons in 
the last (output) layer is computed similarly. 

Training a network consists of adjusting weights of the net-
work using learning algorithms. During learning process, 
neural network adjusts the weights and thresholds so that the 
error between neural predicted output and sampled output is 
minimized. All learning algorithms used in this work are 
based on multilayer correction [19] learning algorithm called 
back propagation. The five different training algorithms we 
used in this work are described briefly as below.   
 

 
 
3.1 Levenberg – Marquardt (LM) Algorithm 
 This is a least –square estimation method based on the max-
imum neighborhood idea [20].  The LM method combines the 
best features of the Gauss-Newton technique and the steepest-
descent method, but avoids many of their limitations. In par-
ticular, it generally does not suffer from the problem of slow 
convergence. 
3.2 Bayesian Regularization (BR) Algorithm  
 This algorithm updates the weight and bias values accord-
ing to their LM optimization and minimizes a linear combina-
tion of squared errors and weights, and then determines the 
correct combination so as to produce a well generalized net-
work. This algorithm can train any network as long as its 
weight, inputs and transfer functions have derivative func-
tions [21]. 
3.3 Quasi-Newton (QN) Algorithm   
 This is based on Newton’s method but doesn’t require calcu-
lation of second derivatives. An approximate Hessian matrix is 
updated. At each iteration of the algorithm, the update is 
computed as a function of the gradient. The line search func-
tion is used to locate the minimum [22]. The first search direc-
tion is the negative of the gradient of performance. In succeed-
ing iterations the search direction is computed according to 
the gradient. 
3.4 Conjugate Gradient of Fletcher-Reeves (CGF) Algo-
rithm 

This method updates weights and bias values according to 
the conjugate gradient with Fletcher-Reeves. Each variable is 
adjusted to minimize the performance along the search direc-
tion. The line search is used to locate the minimum point. 
Fletcher-Reeves version of conjugate gradient uses the norm 
square  of  previous  gradient  and  the  norm  square  of  the  cur-
rent gradient to calculate the weights and biases [22].  
3.5 Scaled Conjugate Gradient (SCG) algorithm 

This algorithm can train any network as long as its weights, 
net inputs and transfer functions have derivative function. 
This  algorithm  is  based  on  conjugate  directions  but  does  not  
perform line search at each iteration. This was designed to 
avoid the time consuming line search. 
 
4 PROPOSED ANN MODEL 
 
 Two back propagation feed forward ANN architectures 
(ANN-S for static threshold voltage and ANN-D for dynamic 
frequency response and mass analysis) are proposed for anal-
ysis  in  this  paper  and  are  shown  in  fig  3(a)  &  (b).  All  model  
parameters are allowed to vary and MATLAB simulation is 
used to generate the datasets for ANN models. The circuit pa-
rameters and dimension of actuated part are selected as input 
and threshold voltage is the output for ANN-S while length 
ratio, Qw ,2  and frequency of operation are input and frequen-
cy response and effective mass are the outputs for ANN-D.  

The selected ranges of input parameters used in the netwrok 
for training are given as follows: 95.01.0 211 lll , 

mgm 104 0 , mwm 52 1  and mwm 205.2 2  
for  ANN-S and 3.01 Q , KHzfKHz 1001.0  and 
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mllm 540440 21  for ANN-D respectively. The ratio 
of training to test data records employed in the experiment is 
60:20. This means that with 468 data records, there are 280 
records for the training set and 94 records for the test set. The 
chosen best trained Levenberg-Marquardt algorithm uses in-
put vectors and corresponding target vectors to train the neur-
al  networks.  The  number  of  hidden  units  directly  affects  the  
performance of the network. Therefore, many experimental 
investigations  are  conducted.  The  number  of  hidden  nodes  
determined to provide the optimal result are 10 for first and 6 
for second hidden layers respectively.  

 

                 (a) 

 

                                                 (b)       (b)  

Fig.3. Feed forward ANN architecture for (a) Static (b) Dynamic behavior 
of double beam switch 

    Thus the architecture of network obtained is 5-10-10-1 for 
ANN-S and 4-6-6-2 for ANN-D. The number of input nodes is 
5 and 4 for ANN-S and ANN-D respectively, representing the 
geometrical parameters of the switch that affect outputs. The 
numbers of output nodes are 1 and 2 for ANN-S and ANN-D 
respectively. In order to evaluate the performance of the ANN 

models, the mean square error (MSE) and the correlation coef-
ficient 2R as defined below are calculated in terms of the dif-
ference between the output of ANNs and training datasets: 

N
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where N is the total number of data sets, ix̂ is input dataset, ix  
is trained ANN output and ix  is mean of ix . 
where N is the total number of data sets, ix̂ is input dataset, 

ix  is trained ANN output and ix  is mean of ix . 
 
5 RESULTS AND DISCUSSION 

 
In order to obtain better performance, faster convergence 

and a simpler structure, the proposed ANN as shown in fig.3 
was trained with five different training algorithms. To prove 
the efficiency and accuracy of the developed ANN models, the 
selected range of input values are used and the networks are 
validated. The comparison of threshold voltage thV as  a  func-
tion of original gap between two electrodes, 0g and the beam 
width 1w are depicted in fig.4 (a)  and (b)  for  ANN model  and 
simulation .  

It is obvious from fig 4 (a) that the threshold voltage thV  de-
creases when the original gap between the two electrodes 0g  
decreases or the length sum 21 ll increases. When the canti-
lever beam length ratio 212 lll  is within the range of 30– 
75 %, thV only  changes  within  10%  of  the  minimum  value  of  

thV which  is  referred  to  as  thV  (min). The corresponding 
length ratio [ 212 lll min1 +l2)](min) to thV (min) is 50% 
when mwmw 5,4.2 21 and 0Alw .  

  

     (a) 
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(b) 

Fig.4.Comparision of ANN and simulation results of calculated threshold 
voltage thV  (a) with various lengths 21221 , lllll ratio, and initial 
gap distance 0g  0,103 mwml , mw 52 and mw 4.21  (b) 
with various cantilever beam widths 21 , ww  

mlml 165,275 21 . 

It also shows that 212 lll (min) is almost independent of 
the initial gap 0g and the length sum 21 ll . Figure 4 (b) 
shows that the threshold voltage thV  is more dependent on the 
beam width 1w  than the mass width 2w . The effect of the mass 
width 2w  is negligible. The threshold voltage thV  increases 
with beam width 1w . 

 In  the  fig  5  (a),  the  variation  in  the  frequency  response  of  
the cantilever beam is simulated with different quality factors.  
It shows that the response amplitude at 15 kHz is increased 
when the quality factor ranges from 0.2 to 2.0. When 5.0Q , 
it has a slow switching time; when ,2Q  it has a long settling 
time. In practice, it is beneficial for the switching time that the 
quality factor of the cantilever beam is designed 
by 25.0 Q . 

Figure 5(b) reveals the portion mass 21 , mm and the effective 
mass m  of a cantilever beam changes with the ratio of  

212 lll   when ml 103 and mll 44021 .  It  is  found  
that the effective mass m  is mainly determined by the mass of 
the electrode part 2m . The effective mass m  is 5–85% of the 
actual total mass of the cantilever beam 2321 1 llmm  
when the ratio of 212 lll  is within the range of 30–75%. 

Figure 5(c) shows that the natural resonant frequency of the 
cantilever beam changes with the ratio of 212 lll  and the 
sum of 21 ll . It shows that the natural resonant frequency of 
the cantilever beam does not changes significantly when 

212 lll  is within the range of 30–75%. For example, with 
ml 103  and mll 44021 , the resonant frequency is 15 ± 

0.5 kHz when 212 lll  is varying in the range of 0.3–0.75. 
The natural resonant frequency of the cantilever beam de-
creases with the increase of 21 ll  due to the increase of the 
effective mass and the decrease of the stiffness of the cantilev-
er beam. 

Two parameters namely correlation coefficient and Mean 
Square Error (MSE) values are used for the performance eval-
uation of the models and comparison of the results for predic-
tion of S-parameters. The higher value of correlation coeffi-
cient and a smaller value MSE mean a better performance of 
the model. The results of the neural network based modeling 
of S-parameter calculation of different combination of input 
parameters with the used data set are provided in Tables 1 in 
terms of the correlation coefficient and mean square errors. 
From fig.4 &5 and the table 1, it is observed that there is an 
excellent agreement between the ANN & theory result. 

TABLE.1  
CALCULATED MEAN SQUARE ERROR (MSE) &CORRELATION COEF-

FICIENT 2R  OF MASS & RESONANT FREQUENCY CALCULATION  

 
The above table shows that the neural network provides bet-

ter results in terms of the higher correlation coefficient, which 
measures  the  strength  and  direction  of  the  linear  relation  be-
tween two variables (actual and predicted values) of R2=0.2446 
(0.5844) with minimum mean square error (MSE) of the model 
of 1.2087e-020 (0.0539) for threshold voltage calculation in 
terms of various length ratios and beam widths. 

 

(a) 

parame-
ters 

Mass calculation 
m  ng  

 
 

1m ng  
 

2m ng  
 

MSE 2.9722e-019 3.0709e-020 1.2087e-020 
R2 0.1375 0.17974 0.2446 

parame-
ters 

Resonant frequency calculation 
mll 21  

440 500 540 
MSE 5.7846e-004 5.4444e-004 0.0539 

R2 0.4057 0.5844 0.1790 
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(b) 

 

(c) 
Fig5. Comparison of ANN and simulated results of (a) Frequency re-
sponse of a cantilever beam with resonant frequency KHzf 15 and 

94.0k (b) Effective mass and portion mass of the cantilever beam ver-
sus the ratio of 212 lll  for mw 4.21 , mw 52 , 

mll 44021 , ml 103 , mwAl 6.0 and mh 35 . (c) Natu-
ral resonant frequency versus the ratio of 212 lll  for  

mw 52 , mh 35  and mw 4.21 , mwAl 6.0 .  

6 CONCLUSION 
 
 We have made a comprehensive analytical model based on 
MLP neural network for the design of static and dynamic lat-
eral RF MEMS switch. The developed neural model matches 
closely with the literature results. The proposed ANN struc-
ture can be effectively used for analyzing the characteristics of 
lateral RF MEMS switch based on static and dynamic beha-
vior. The comparison between the neural model and theoreti-

cal  results  reveals  that  our  proposed  neural  model  is  much  
useful for the behavior study of RF lateral double beam 
switches. Since the neural models presented in this work have 
good accuracy, require no tremendous computational efforts 
and  less  background  information  about  bridges,  they  can  be  
very  useful  for  the  development  of  fast  CAD  algorithms.  A  
distinct advantage of neural computation is that, after proper 
training, a neural network completely bypasses the repeated 
iterative processes when new cases are presented to it. Since 
the training and testing time is less than few microseconds, the 
proposed  neural  model  is  quite  fast  in  the  design  and  loss  
analysis of lateral MEMS series switch. 
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